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Requirements of the FNAL/Homestake Beam

The NuMI Beamline

The design specifications of a new WBLE beam based at the Fermilab MI
are driven by the physics of νµ → νe oscillations:
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L = 1300 km, Normal Hierarchy

Requirements:
-Maximal possible neutrino fluxes
to encompass the 1st and 2nd
oscillation nodes, with maxima
at 2.4 and 0.8 GeV.
-High purity νµ beam with
negligible νe

-Minimize the neutral-current feed-down contamination at lower
energy, therefore minimizing the flux of neutrinos with energies
greater than 5 GeV is highly desirable.
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Requirements of the FNAL/Homestake Beam

The NuMI Beamline

The design specifications of a new WBLE beam based at the Fermilab MI
are driven by the physics of νµ → νe oscillations:
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=0cp δ = 0.02, 13 θ 2 2sin 

/2π=-cp δ = 0.02, 13 θ 2 2sin 

= n/acp δ =0, 13 θ 2 2sin 

L = 1300 km, Inverted Hierarchy

Requirements:
-Maximal possible neutrino fluxes
to encompass the 1st and 2nd
oscillation nodes, with maxima
at 2.4 and 0.8 GeV.
-High purity νµ beam with
negligible νe

-Minimize the neutral-current feed-down contamination at lower
energy, therefore minimizing the flux of neutrinos with energies
greater than 5 GeV is highly desirable.

3 / 18



LBNE Physics
and Beam
Designs

Mary Bishai
(BNL)

Specifications

Target/Horn
designs

Beamline
Geome-
try/Material

Physics
Sensitivities

Primary Beam
Energy

Possible Beam
Design
Improvements

Summary and
Conclusions

LBNE Target Design

The designed LBNE target is a cylindrical segmented graphite tube.
r=0.765cm, l=95cm (2 interaction lengths) long. Water cooled.

Target design from IHEP

π production study by Y. Lu:

E vs Eπν
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C target at 120 GeV is optimal for ν production at the 1st maximum4 / 18
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The Focusing System for LBNE

A focusing system with the 2 NuMI horns with an embedded
cylindrical graphite target, is well suited for LBNE:
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Modifications to NuMI horn 1 in technical design (Y. He, B. Lundberg, FNAL):
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Beamline Geometry/Material

Air cooled decay pipe with radius=2m, length = 200 to 250m
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Beamline Geometry/Material

Air cooled decay pipe with radius=2m, length = 200 to 250m
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D.P. Rate Rate Rate
length 0-2 2-6 > 6

m GeV GeV GeV
180 3.1 11 6.3
280 3.5 14 8.1
380 3.6 16 9.7
480 3.7 17 11
580 3.7 17 11

Decrease DP length from 250 to 200 m

∼ 13% decrease in rate at 1300km
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The LBNE Beam Design for Case Studies

The LBNE design selected for physics studies maximizes the νe

appearance signal at 1300km.
Target: Carbon target, r=0.6cm, l=80cm, ρ = 2.1 g/cm3. Located
-30cm from Horn1.
Horns: 2 Al NuMI Horns, 6m apart, 250 kA.
Decay Pipe: r=2m, l=280m, He filled/evacuated.
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LBNE Physics from WCD Case Study
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Main Injector Proton Beam Power R. Zwaska, FNAL
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Impact of Primary Beam Energy Lisa Whitehead

Sensitivity to Mass Hierarchy at 3σ

MI may be able to deliver 700kW from 80-120 GeV only
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Impact of Primary Beam Energy Lisa Whitehead

Sensitivity to CPV at 3σ

MI may be able to deliver 700kW from 80-120 GeV only
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Tunable Beams for More Physics

Different beam tunes improve sensitivity to a wide range of physics:
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13 / 18



LBNE Physics
and Beam
Designs

Mary Bishai
(BNL)

Specifications

Target/Horn
designs

Beamline
Geome-
try/Material

Physics
Sensitivities

Primary Beam
Energy

Possible Beam
Design
Improvements

Summary and
Conclusions

Impact of the 2nd Maximum D. Mohapatra Virginia Tech.

Different Beam Fluxes Studied

Impact of Second Maximum with Different Fluxes

0.5 < Eν < 12 GeV
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Impact of the 2nd Maximum D. Mohapatra Virginia Tech.

Different Beam Fluxes Studied

Impact of Second Maximum with Different Fluxes

1.25 < Eν < 12 GeV
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New Target Design Proposal M. Bishai, Y. Lu (BNL)

Hybrid target design: NEW
C-Ta Design
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Increases π flux at 2nd maximum by ∼ 50%

Decreases π flux > 20 GeV (Eν > 8 GeV) by 50%
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Unique Physics with Low Energy Beams?

Improves access to θ23 octant, exclusive measurement of νe

appearance when θ13 = 0 and more clean flux at 2nd maximum.
These beams could be generated by moving the beam focusing 1◦

off-axis, or with a multi-MW 5-8 GeV beam (Project X ?).
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Physics impact is still being assessed.
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Summary and Conclusions

The techincal design of the LBNE beamline is very advanced and
relies heavily on the experience from NuMI.

There is still a lot of room for improvement.

Lots of bang for few bucks in improving target/focusing designs.

Reducing the decay pipe length reduces the flux - more running
time to get the same physics. An air filled decay pipe also
reduces the flux further (15% at the 1st osc maximum).

At least 2 beam tunes are needed to constrain near to far
extrapolation. Tunable beams = more physics.

Physics with low energy long baseline beams is being studied.
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